
CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 1 of 10

CS321 Team Project
The goal of this project is to go through all aspects of the software development life cycle in a small team.
This will give you real experience in each stage from problem formation, requirements gathering and
analysis, design, implementation (somewhat) and testing. You will use UML diagrams, text descriptions, and
scheduling tools to create your deliverables.

You are starting a new small software company. This is your first project. You want to create something that
people will use. You are the software team. You should assume other teams exist in your company (marketing
sales, tech support, etc...). These other teams will be stakeholders (people who have an interest in what you're
doing). NOTE: These are virtual people, you have to think for them in this project, or you can ask the
professor or TA to answer questions to these people.

You will be required to extend an existing piece of non-trivial software for this project, the CS321 Quiz
Game. Below is a description of the system. Beware that this description was provided by the customer; it
might have ambiguities, inconsistencies, or even missing information!

The Quiz Game system will allow students and teachers to practice taking quizzes for their class.
Quizzes are composed of one or more questions, which can be of three different types; short answer,
multiple choice, and coding. Any user can take any of the existing quizzes, and the most recent score
will be stored on an external grade server. To access the system, each user will have been provided with
a username and password from their administrator (these are generally handed out on pieces in paper
during lab sections).

Users will spend most of their time taking quizzes. To do so, they must first login with their username
and password. Once logged in, they can choose to take an existing quiz, create a question to add to a
quiz, or view their grades.

If they choose to take a quiz, they will go through all of the questions in order, answering any that they
have not correctly answered on this attempt, or quitting any time. The quiz will loop until they either
answer all questions correctly, or quit, at which point the user is presented with their score. This score
is recorded on the external grade server within 60 seconds of completing the quiz. While short answer
and multiple choice questions will be easily compared simply by diff-ing the expected answer with what
the student answers, for a coding question there may be multiple correct implementations. For this
reason, for such questions, the users' code will be compiled, and then run using the sample input, and
compared to the expected output for correctness.

If there are no existing quizzes to choose from, the user can create a question. Creating a question
happens by specifying the question itself, and then choosing a type of question. If it is a simple short
answer question, the user provides the answer; if it is a multiple choice question, they provide a list of
options and then the correct answer; and if it is a coding question, they provided a sample input,
sample output, and the correct answer. Then, the user will specify to which quiz the question should
belong, or specify a new quiz by giving the quiz a name.

If the user is not creating a question or taking a quiz, they can view their grades on all quizzes so far.

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 2 of 10

The grade server stores all quizzes ever taken by the user, but this system will only display the most
recent grade for any particular quiz. Besides students, the system will also recognize the role of a
teacher; when a teacher chooses to view grades, they will be shown all newest quiz grades for all
students. Occasionally, teachers will want to manually change a grade; they and only they will be
allowed to do so when viewing all student grades by choosing the student and quiz they want to update,
and then entering the new grade. This new grade will then be stored on the external grade server.

The system shall store the users and quizzes locally in a database, so that the system can be periodically
taken offline if necessary.

The system shall connect with the external grade server each time the application is run. This external
grade server will periodically log user activity. Once the user finishes the interaction with the Quiz
Game, the external grade server will be notified.

Finally, the system will email all users their most recent quiz grades on a weekly basis.

You will also be required to extend this system with at least one non-trivial feature. For example, the current
system functions as a command-line tool; it might be nice to convert it to a GUI if you would be interested in
learning Java Swing. Or, you could add an extension such as the ability to keep track of various user
statistics, develop new types of quizzes, or make an interface to store more information on the grade server,
etc.

After each deliverable, a solution will be provided on Piazza, as all students are implementing the same
system (with the exception of the additional feature). A use case diagram will yield a class diagram, and
eventually the professor will post a Java implementation of the system consistent with all solutions to all
deliverables. You should use that implementation to add an additional feature to the product, and assume its
API for writing unit tests. Be careful however; when inheriting other people's code, or open source software,
it may contain bugs! You'll want to test the software well before adding additional features! You do not have
to fix any bugs you find, unless it interferes with your feature.

The project deliverables are detailed below. The first one will involve selecting a Team Leader. The Team
Leader will remain consistent throughout the semester, and will be responsible for overseeing a Team
Manager, which will be a different person for every deliverable. Each deliverable should be submitted as a
PDF unless noted otherwise.

During this stage you will form into groups of 4-5 students. You may choose
your own teams, however they may be adjusted if necessary to have equal
numbers of students in all teams. If you cannot find a team, please see me
and you will be assigned to a team. One challenge of software engineering
(and life in general) is making decisions based on limited information. You
need to choose a team, but you do not have enough information about the
other students in the class to do this well, but you need to do it.

Deliverable: A short written document including:

Comment [GG1]: Each writing assignment includes a
description, as well as rationales, strategies, or suggestions
for writing in this field/genre.

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 3 of 10

You and your team will create at least seven use cases for the Quiz Game
project. You will complete the following steps:

1. The Team Leader will select a Team Manager for the project. The

Team Manager will create a folder on svn called Use_Cases. Within
that, the Team Manager will create the subfolders Individual and
Team.

2. Each group member will individually create a Use Case Diagram from
the description of the Quiz Game problem above. See the grading
rubric below. Each team member will submit their diagram though svn
to the Use_Cases/Individual folder (their name should be in the
filename).

3. The team will meet and/or discuss the individual use case diagrams
and arrive at a consolidated diagram, which they will submit to the
Use_Cases/Team folder.

4. The Team Manager will assign each group member 1-2 use cases to
create use case descriptions for (some use cases are longer than
others). The Team Manager will place a template/blank file in the
Use_Cases/Team folder that initially just has the finalized use case
diagram inside of it. Each member will create the use case
descriptions, and add them to the shared file mentioned, checking for
consistency/compatibility as they update the file with their changes.
See the grading rubric below.

Your use cases must include your additional feature. If your additional
feature is a GUI, that is not a use case - just include that as a note.

Grading Rubric for Use Case Diagram: (18 points)

Your team (company) name, your team members' names and emails - 3
pts
At least one time during the week you can meet in person if needed (all
team members available) - 1 pt
What additional feature or non-trivial functionality your team will
provide for the Quiz Game. Later in the semester you will be given the
source code of the current version of the game; it is run through the
command line and written in Java - 5 pts
Describe how the team leader was chosen, and why your team believes
that using this method will result in the best leader for this team
project. This description should be no less than five sentences in length
- 5 pts

Turn this deliverable in through Piazza, under the team_formation folder.
You may make a public or private post. In the future, all deliverables will be
submitted through svn.

Team Formation
14 points
(due 9/7)

Use Cases
42 points

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 4 of 10

(due 9/18)

Grading Rubric for Use Case Descriptions: (24 points)

At least seven use cases 7 points

At least one includes relation, correctly implemented 2 points
At least one extends relation, correctly implemented 2 points
At least one generalization relation, correctly implemented 2 points
At least two actors, correctly implemented 2 points
At least one external system, correctly implemented 2 points
Includes your additional feature 1 point

Each team member must put their name next to the use case
descriptions they wrote, and must write at least 250 words

loss of all
points if
missing

Descriptions avoid using language that includes
implementation details

7 points (one
each use
case)

Descriptions have all described functionality for basic and
alternative flows

7 points (one
each use
case)

Descriptions correctly use includes and/or preconditions

7 points (one
each use
case)

Descriptions complete all fields in the template

7 points (one
each use
case)

You and your team will create at least seven functional, and three non-
functional requirements for the Quiz Game project. You will complete the
following steps:

1. The Team Leader will choose a new Team Manager for this

deliverable. The Team Manager will create a folder on svn called
Requirements. Within that, s/he will create the subfolders Individual
and Team.

2. Each group member will individually create 7 functional requirements
and two non-functional requirements. See the grading rubric below.
Each team member will submit their chart though svn to the
Requirements/Individual folder (their name should be in the
filename).

3. The Team Manager will place a template/blank file in the
Requirements/Team folder that initially just has a table with columns
{unique ID, priority, type (functional or non-functional), source,
contained in use case(s), and description. The team will meet and/or

Comment [GG2]: Assignment prompts describe grading
criteria.

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 5 of 10

discuss the individual requirements, and arrive at a consolidated set,
potentially expanding it to include all system functionality, which they
will submit to the Requirements/Team folder. See the grading rubric
below.

Your requirements must include your additional feature.
Grading Rubric for Requirements: (19 points)

Here are some lessons learned about requirements

You and your team will use your existing deliverables to decide upon a set of
classes for the system. Your team will complete the following:

1. The Team Leader will select a new Team Manager for this deliverable.

The Team Manager will create a folder on svn called Class_diagram.
Within that, s/he will create the subfolders Individual and Team.

2. Each group member will individually create a class diagram. See the
grading rubric below. Each team member will submit their diagram
though svn to the Class_diagram/Individual folder (their name
should be in the filename).

3. The Team Manager will place a template/blank file in the
Class_diagram/Team. The team will meet and/or discuss the class
diagrams, to arrive at a consolidated class diagram which they will
place in this folder. See the grading rubric below.

Your class diagram must include your additional feature.
Grading Rubric for Class Diagram: (27 points)
The class diagram accounts for all of the canonical requirements. 13 points
At least one dependency is correctly implemented 2 points
At least one aggregation is correctly implemented 2 points
At least one generalization is correctly implemented 2 points
All associations have multiplicities 2 points

Functional requirements describe all of the functionality of the
system.

10
points

At least two plausible non-functional requirements are included 4 points
All requirements have a unique ID 1 point
All requirements have a priority 1 point
All requirements have a source (the customer) 1 point
All requirements are labeled as functional or non-functional 1 point
All requirements map into appropriate use cases 1 point

Requirements
19 points
(due 9/23)

Class Diagram
27 points
(due 9/30)

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 6 of 10

You and your team will use your existing deliverables to create dynamic
modeling diagrams for your system. Your team will complete the following:

1. The Team Leader will choose a new Team Manager. The Team

Manager will create a folder on svn called Dynamic_models.
2. The Team Manager will assign each group member to create one of

{swimlane diagram for a use case, sequence diagram for a use case,
state diagram for a use case, state diagram for the system, (and another
sequence diagram if the team has five members)}. All diagrams must
be for different use cases, but be careful which use cases you select -
some use cases will not meet all of the requirements below. See the
grading rubric below. Each team member will submit their diagram
though svn to the Dynamic_models folder (their name and the type of
diagram should be in the filename).

3. Once all diagrams have been completed, each team member is
responsible for reviewing the other team members' diagrams for
correctness.

One of the diagrams must document/use your additional feature.
Grading Rubric for Dynamic Analysis Diagram: (26 points)

The swimlane diagram contains at least two actors. 2
points

The swimlane diagram contains a start and end state. 2
points

The swimlane diagram contains at least one includes of another
(abstract) swimlane diagram.

2
points

The swimlane diagram contains at least one fork and join. 2
points

The swimlane diagram contains at least one decision, correctly
labeled.

2
points

The sequence diagram(s) contains at least two classes. 2
points

The sequence diagram(s) contains at least one option or loop. 2
points

The sequence diagram(s) contains at least one synchronous call. 2
points

The sequence diagram(s) contains at least one asynchronous call. 2
points

All associations have navigations 2 points

All attributes have types 2 points
All methods have argument and return types 2 points

Dynamic Analysis
Diagrams
26 points
(due 10/9)

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 7 of 10

You and your team will use the class diagram as an API to write unit tests
against (test driven development). Your team will complete the following:

1. The Team Leader will select a new Team Manager for this deliverable.

The Team Manager will create a folder on svn called Unit_tests.
2. The Team Manager will assign each group member one or two classes

to write unit tests for (the GradeServer class is an external system in
this scenario so it cannot be one of the classes you test). See the
grading rubric below. Each team member will submit their unit tests
though svn to the Unit_tests folder (their name should be in
comments inside the file).

3. Once all unit tests have been completed, each team member is
responsible for reviewing the other team members' diagrams for
correctness.

4. This deliverable should be submitted as .java files.

Grading Rubric for Unit tests: (10 points)
All constructors are tested. 3 points
All non-getters/setters are tested. 7 points

Think about how you design your unit tests. What kind of coverage are you
trying to achieve? You will need to discuss these items in a future, individual
homework assignment.

The sequence diagram(s) has correct labels on all messages. 2
points

The state diagrams contain a label on each trigger. 2
points

The state diagrams contain a start and end state. 2
points

The state diagrams contain a side effect on ar least one trigger. 2
points

Implementation
15 points
(due 10/30)

Your team will implement your additional feature in class using pair
programming. This will be graded during the demo presentations of your
software during your final exam. The Team Leader will choose a new Team
Manager for this deliverable. The Team Manager will be responsible for
making programming assignments.

Unit tests
10 points
(due 10/30 -
System Tests also
due this date, see
below)

You will produce a set of test cases for your project. These test cases will be
for a subset of your project, not the whole thing. Your team will complete the
following:

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 8 of 10

1. The Team Leader will select a new Team Manager for this deliverable.

The Team Manager will create a folder on svn called System_tests.
2. The Team Manager will assign each group member one or two use

cases to write system tests for. See the grading rubric below. Each team
member will submit their system tests though svn to the System_tests
folder (their name should be in comments inside the file).

3. Once all system tests have been completed, each team member is
responsible for reviewing the other team members' tests for
correctness.

Grading rubric for system tests: (10 points)
Each system test covers all the basic and alternate flows of the
selected use case.

5
points

Each system test step uses proper language and instructions for the
test inputs (in a deterministic way a person using the system could
execute them)

3
points

Each system test step uses proper language and instructions for the
expected results (in a way they could be compared for correctness)

2
points

The test case should follow the Sample System Test Case. By this point you
should have working code, so the the "Actual Results", and the two
following it, should also be filled out.

Helpful Hints: If a test step says "the user presses button x or button y" --
make two test cases, one for button x and one for button y. If a test result
says "if the password was valid, the user goes forward, otherwise they get
sent to the login screen" -- make two tests, one for a valid login and one for
an invalid login. Test cases should be repeatable and clearly test one
scenario.

System/Integration
Test Cases
10 points
(due 10/30)

Write a short document (at least 1000 words) for students next semester with
respect to how to successfully work in a team environment. Find one over-
arching theme or thesis about successful groupwork, and break down your
arguments into three components. Use examples from your experience of
activities that were productive, and activities that were less useful or hurtful.

This assignment is part of the WAC requirements for the course, and will
consist of three deliverables:

An outline
A draft
A final deliverable

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 9 of 10

The three components are described below:

Essay outline: 10 points (due 11/17)

Project Team
Review Essay
50 points
(due 11/17, 12/3,
and date of final
exam)

Essay Draft: 30 points (due 12/3)
The essay has an opening paragraph that provides a brief
introduction/illustration of what teamwork is on a software
project

3 points

The essay contains a theme/thesis as the basis for the subsequent
arguments 4 points

The essay uses proper spelling and grammar 6 points
The essay flows cleanly between different paragraphs 5 points
Each paragraph ties in to the thesis 6 points
Each paragraph uses examples to support its point 6 points

Writing quality estimate

(Up to
10
points)

Final essay: 10 points (due by final exam; bring in old essay and new one)
The essay will be graded on overall writing quality; these points
were estimated for the draft; students have an opportunity to earn all
10 points by addressing any suggestions made by the professor on
the draft.

10
points

The essay outline and draft will be graded in-class.

You will be using svn to maintain and turn in your deliverables for this project. Once I have your team emails
I will setup a project there for you. For each assignment, make sure to name the file as stated in this
document, and place it in a folder with the name as described. Most deliverables are required to be in a single
file. If you do not follow this convention, then I will not be able to grade your assignments.

Outline is a bulleted list 1
point

Outline contains a theme/thesis as the first bullet 2
points

Outline contains three bullets that relate to the thesis (each should be
a full sentence tying in to the thesis)

3
points

Each of the three bullets above contains at least one sub-bullet of
evidence/experience to support the argument

3
points

Outline has a meaningful title 1
point

Comment [GG3]: Assignment describes grading criteria
for writing assignments.

Comment [GG4]: Assignment indicates required draft
deadline and revision deadline, with sufficient time for
thoughtful faculty feedback and for student revision.

Comment [GG5]: Assingment describes that the
instructor will provide feedback on writing.

Comment [GG6]: Assignment describes specific
strategies and conventions necessary for student success on
this assignment.

CS321 Project 9/30/15, 11:03 AM

https://cs.gmu.edu/~kdobolyi/cs321/project.html Page 10 of 10

For each deliverable, please include your team name, and the names of all of your team members at the top of
the first page of the document(s) submitted. Failure to do so will result in a loss of 3 points.

Every team member must contribute equally to each assignment. You should be using svn to assign parts of
the deliverables to team members. In addition, each team member must use the svn repository of svn to
upload their work/changes. If there are any disputes about contributions to assignments, I will first examine
the tasks assigned to the team members through svn, and then look at who committed what to the repository. I
reserve the right to retroactively adjust points for deliverables if it turns out that students were not
participating equally. Note: showing up for a team meeting, uploading the template file with minimal
changes, or submitting a poorly-implemented version of your task do not count as work that had academic
merit and will therefore will not receive points. Please note that your deliverables will be graded as a group -
therefore, all team members are responsible for ensuring the correctness of the deliverables as a whole. If
problems arise with specific individuals, please let me know immediately - I have removed people from
groups before for not doing any meaningful work.

